Multi-objective variational autoencoder: an application for smart infrastructure maintenance
نویسندگان
چکیده
Abstract Multi-way data analysis has become an essential tool for capturing underlying structures in higher-order sets where standard two-way techniques often fail to discover the hidden correlations between variables multi-way data. We propose a multi-objective variational autoencoder (MO-VAE) method smart infrastructure damage detection and diagnosis sensing based on reconstruction probability of deep neural network (ADNN). Our fuses from multiple sensors one ADNN at which informative features are being extracted utilized identification. It generates probabilistic anomaly scores detect damage, asses its severity further localize it via new localization layer introduced ADNN. evaluated our laboratory-based real-life structural datasets area health monitoring purposes. The was collected deployed acquisition system cable-stayed bridge Western Sydney, reinforced concrete cantilever beam replicates major components Sydney Harbour Bridge laboratory building structure obtained Los Alamos National Laboratory (LANL). Experimental results show that proposed can accurately damage. also able estimate different levels severity, capture locations unsupervised aspect. Compared state-of-the-art approaches, shows better performance terms localization.
منابع مشابه
Variational Multi-Objective Coordination
In this paper, we propose variational optimistic linear support (VOLS), a novel algorithm that finds bounded approximate solutions for multi-objective coordination graphs (MO-CoGs). VOLS builds and improves upon an existing exact algorithm called variable elimination linear support (VELS). Like VELS, VOLS solves a MO-CoG as a series of scalarized single-objective coordination graphs. We improve...
متن کاملan application of fuzzy logic for car insurance underwriting
در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...
Variational Lossy Autoencoder
Representation learning seeks to expose certain aspects of observed data in a learned representation that’s amenable to downstream tasks like classification. For instance, a good representation for 2D images might be one that describes only global structure and discards information about detailed texture. In this paper, we present a simple but principled method to learn such global representati...
متن کاملQuantum Variational Autoencoder
Variational autoencoders (VAEs) are powerful generative models with the salient ability to perform inference. Here, we introduce a quantum variational autoencoder (QVAE): a VAE whose latent generative process is implemented as a quantum Boltzmann machine (QBM). We show that our model can be trained end-to-end by maximizing a well-defined loss-function: a “quantum” lowerbound to a variational ap...
متن کاملEpitomic Variational Autoencoder
In this paper, we propose epitomic variational autoencoder (eVAE), a probabilistic generative model of high dimensional data. eVAE is composed of a number of sparse variational autoencoders called ‘epitome’ such that each epitome partially shares its encoder-decoder architecture with other epitomes in the composition. We show that the proposed model greatly overcomes the common problem in varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Intelligence
سال: 2022
ISSN: ['0924-669X', '1573-7497']
DOI: https://doi.org/10.1007/s10489-022-04163-2